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Abstract: This paper investigates the torsional-flexural buckling behavior of thin-walled columns with single 

symmetric open sections. It focuses on deriving and solving the buckling equations for these specific column 

configurations. The analysis reduces the problem to a system of algebraic eigenvalue-eigenvector problems, 

identifying the critical buckling loads and modes. The buckling behavior is described by a system of three 

homogeneous differential equations, with two uncoupled equations, simplifying the analysis. Numerical examples 

illustrate that critical buckling loads decrease as column length increases, highlighting the relationship between 

length and stability. The results were validated through comparisons with established methods, including the 

differential equations method by Jerath (2020) and the equilibrium of deformed shape approach by Iyengar (1988), 

both of which show consistent results. This research contributes to a deeper understanding of the stability of thin-

walled columns, providing essential insights for structural design and safety. 

Keywords: Single symmetric section, thin-walled column, flexural-torsional buckling, Ritz method, eigenvalue-

eigenvector problem.  

1. INTRODUCTION 

Thin-walled structures find diverse engineering applications across industries such as aerospace, automotive, and 

construction, proving pivotal in reducing overall structure’s weight. Among systems designed to prevent buckling 

efficiently, thin-walled members stand out due to their optimal material usage and composition of several thin parts (Al-

Ansari, Abdulsamad, Gburi, & Al-Anssari, 2020). These parts allow easy formation into various shapes with high shape 

factor, minimizing material consumption.  

However, thin-wall columns are susceptible to buckling, which is the sudden lateral deflection or failure of the column 

under compressive loads (Bin, Mohamed, Aabid, & Ibrahim, 2022). Buckling is a common phenomenon observed in thin-

walled structures, referring to the loss of stability in a component due to lateral deflection when subjected to an axial force. 
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The column's weakness causes it to bend, leading to rapid and potentially hazardous failure. Whether a column buckles or 

not depends on its length, strength, and other relevant factors. According to Baird, Hendy, Wong, Jones, Sollis, and Nuttall 

(2011), elastic buckling is more likely to occur in long columns relative to their thickness or when an applied compressive 

load surpasses the critical allowable load of the thin-walled structure. In general, the buckling failure usually occurs in thin-

walled open cross-sections due to a combination of torsion and bending Jerath, (2020).The buckling mode represents the 

shape or pattern of the deformation that occurs during buckling. 

The buckling behavior depends on the column's slenderness ratio and boundary conditions. Proper analysis and design 

techniques, such as incorporating bracing or using appropriate reinforcement, are employed to prevent buckling and ensure 

the stability and strength of thin-wall columns. 

Subsequent work by Wagner (1929) and later work by Bleich (1952) and also by Timoshenko and Gere (1961) led to the 

development of a general theory of flexural-torsional buckling. They provided the classical energy equation for calculating 

the elastic flexural-torisonal buckling loads of thin-walled beams. Galambos (1963) introduced inelastic behavior of the 

flexural-torsional buckling; similar research was also presented by Lee (1960), White (1956), Wittrick (1952), and Horne 

(1950). All of these researches were done using the classical method, which provided exact solutions, yet it is limited by 

the necessity to make extensive calculations by hand. This situation changed dramatically with the advent of digital 

computers in the 1960’s.  

The classical energy equations for calculating the elastic flexural-torsional buckling load of thin-walled beams are usually 

assumed to be independent of the prebuckling deflections. The strain energy stored throughout deformation, U is obtained 

by the product of the strain components and their corresponding stress components integrated over the volume of the elastic 

body. (Arizou, 2020). 

 Iyengar (1988) presented a work on torsional-flexural buckling of open section using equilibrium method. More recent 

research on the theory of flexural-torsional buckling has been presented by Tong and Zhang (2003a) and (2003b) with their 

investigations of a new theory to clarify the inconsistencies of existing theories of the flexural-torsional buckling of thin-

walled members. Ezeh (2009) conducted a theoretical analysis based on Vlasov’s theory, as modified by Varbanov, to 

examine flexural, flexural-torsional, and flexural-torsional-distortional buckling modes of thin-walled closed columns. 

Chidolue and Osadebe (2012) also employed Vlasov’s theory for the torsional-distortional analysis of thin-walled box girder 

bridges. Similarly, Chidolue and Aginam (2012) studied the effects of shape factor on the flexural-torsional-distortional 

behavior of thin-walled box girder structures using Vlasov’s theory. In another study, Ezeh (2010) investigated the buckling 

behavior of axially compressed multi-cell doubly symmetric thin-walled columns using Vlasov’s theory. Additional works 

by Osadebe and Chidolue (2012a, 2012b), and Osadebe and Ezeh (2009a, 2009b) were also grounded in Vlasov’s method. 

Furthermore, Ezeh and Osadebe (2010) conducted a comparative study on Vlasov and Euler instabilities of axially 

compressed thin-walled box columns. 

2. THEORETICAL FRAMEWORK 

Since thin-walled structures tend to be slender, they are vulnerable to buckling instabilities at the local as well as the global 

scales. Therefore it is necessary to derive simplified stability equation for flexural-torsional (FT) buckling analysis of thin-

walled columns of open sections. This research aims to achieve the following objectives: 

i. To determine the total potential energy functional of a thin-walled column with single symmetric open cross-section 

undergoing flexural-torsional buckling. 

ii. To obtain the differential equation for the flexural-torsional buckling analysis of single symmetric thin-walled columns 

with open cross-sections. 

iii. To obtain elastic buckling equation using energy formulation for single symmetric thin-walled columns with open cross-

sections. 

iv. To solve numerical problems with the method developed herein 

2.1 Assumptions 

The energy formulation is based on the following assumptions: 

(i) Shear centre of the cross-section is chosen as the origin. 
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(ii) The x and y coordinate axes are assumed to be coincident with the principal axes of the open cross-section, and the z 

coordinate axis is the longitudinal axis of the thin-walled column through the shear centre. 

(iii) The displacement field include the displacements along x, y and z direction designated as u, v and w. Strain energy and 

external work for each case shall be treated independently first. The positions O and S stand for the centroid and shear 

center respectively. 

(iv) The displacement of the shear center along y-axis and z- axis are denoted as v and w respectively. On the other hand, 

the displacement of the centroid along y-axis and z-axisare denoted as v*. w*. 

(v) The linear space between the shear center and the centroid remains constant after the translational displacement. 

(vi) The shear centre of the cross-section is chosen as the origin. The x and y coordinate axes are assumed to be coincident 

with the principal axes of the open cross-section, and the z coordinate axis is the longitudinal axis of the thin-walled column 

through the shear centre. 

2.2 Determination of the Total Potential Energy Functional for single symmetric Thin-Walled Column with Open 

Cross-Section undergoing Flexural-Torsional Buckling 

The total potential energy functional () for the single symmetric thin-walled column with open cross-section under 

flexural-torsional buckling is the sum of the strain energy functional U and the potential energy due to the external 

compressive load V 

 =  𝑈 − 𝑉                                                                                                                                               (1) 

Consider a column with arbitrary cross section shown In Figure 2.1. 

 

Figure 2.1: Column under axial load 

This analysis comprises of column buckling under the following cases:  

i. Pure flexural buckling 

ii. Pure torsional buckling  

iii. Flexure - torsional buckling  

𝑤∗ = 𝑤 − (𝑦0 − 𝑦). ∅                                                                                                                               (2) 

𝑣∗ = 𝑣 + (𝑧0 − 𝑧). ∅                                                                                                                                 (3)                       

Where ∅ rotation of the cross-section about the shear is center O, 𝑦0 and 𝑧0represent the coordinates of the shear center O 

2.2.1 Flexural Buckling  

Let a portion of the column be considered.  
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The total change in length of the column after buckling is given by equation (4).  

That is: 

∆𝑧 =
1

2
∫ (

𝑑𝑤∗

𝑑𝑥
)

2

𝑑𝑥
𝐿

0

                                                                                                                               (4) 

If the buckling occurred in the y direction, the change in length shall be obtained by modifying Equation 4 appropriately 

as: 

∆𝑦 =
1

2
∫ (

𝑑𝑣∗

𝑑𝑥
)

2𝐿

0

𝑑𝑥                                                                                                                                 (5) 

Total buckling is obtained by adding the buckling in both y and z directions. That is adding Equations (1) and (5), which 

gives 

∆ =
1

2
∫ [(

𝑑𝑣∗

𝑑𝑥
)

2

+ (
𝑑𝑤∗

𝑑𝑥
)

2

]
𝐿

0

𝑑𝑥                                                                                                            (6) 

The indefinite summation product of axial stress and buckling caused by it within the domain (cross section area of the 

column) gives the external work: 

𝑉 = ∬ 𝜎𝑥∆
𝐴

𝑑𝐴                                                                                                                                           (7) 

From Kirchhoff's assumptions of zero shear strains: 

𝛾𝑥𝑧  =
𝑑𝑢𝑧

𝑑𝑧
+

𝑑𝑤

𝑑𝑥
= 0                                                                                                                                 (8) 

𝛾𝑥𝑦  =
𝑑𝑢𝑦

𝑑𝑦
+

𝑑𝑣

𝑑𝑥
= 0                                                                                                                                  (9) 

Solving Equations (8) and (9), yields Equation (10) and (11) respectively: 

𝑢𝑧  = −𝑧
𝑑𝑤

𝑑𝑥
                                                                                                                                               (10) 

𝑢𝑦  = −𝑦
𝑑𝑣

𝑑𝑥
                                                                                                                                                (11)                                                                         

Normal strain in x direction is the first derivative of Equations (6) and (7) with respect to x: 

𝜀𝑥
𝑧  = −𝑧

𝑑2𝑤

𝑑𝑥2
                                                                                                                                           (12) 

𝜀𝑥
𝑧  = −𝑦

𝑑2𝑣

𝑑𝑥2
                                                                                                                                            (13) 

Adding Equations (12) and (13) gives the normal strain along x-axis as: 

𝜀𝑥 = − (𝑧
𝑑2𝑤

𝑑𝑥2
+ 𝑦

𝑑2𝑣

𝑑𝑥2
)                                                                                                                       (14) 

From Hooke's law, stress is mathematically defined by Equation (15) 

𝜎𝑥 = 𝐸𝜀𝑥  = −𝐸 (𝑧
𝑑2𝑤

𝑑𝑥2
+ 𝑦

𝑑2𝑣

𝑑𝑥2
)                                                                                                       (15) 

Average strain energy is given by Equation (16) 

𝑈 =
𝐸

2
∫ [𝐼𝑧 (

𝑑2𝑤

𝑑𝑥2
)

2

+ 2𝐼𝑦𝑧

𝑑2𝑤

𝑑𝑥2
∗

𝑑2𝑣

𝑑𝑥2
+ 𝐼𝑦 (

𝑑2𝑣

𝑑𝑥2
)

2

] 𝑑𝑥                                                              (16) 
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Where: 

𝐼𝑦𝑧 = ∫ ∫ 𝑦𝑧
𝑡2

𝑡1

𝑏2

𝑏1

𝑑𝑦𝑑𝑧 = 0                                                                                                                     (17) 

Substituting Equation (17) into Equation (16) gives: 

𝑈 =
𝐸

2
∫ [𝐼𝑧 (

𝑑2𝑤

𝑑𝑥2
)

2

+ 𝐼𝑦 (
𝑑2𝑣

𝑑𝑥2
)

2

] 𝑑𝑥                                                                                              (18𝑎) 

Substituting Equation (15) into Equation (7) gives: 

𝑉 = ∬ 𝜎𝑥

1

2
∫ [(

𝑑𝑣∗

𝑑𝑥
)

2

+ (
𝑑𝑤∗

𝑑𝑥
)

2

]
𝐿

0

𝑑𝑥
𝐴

𝑑𝐴                                                                                  (18𝑏) 

Where A is cross sectional area 

That is: 

𝑉 =
𝜎𝑥

2
∬ ∫ ([

𝑑𝑣

𝑑𝑥
]

2

+ [
𝑑𝑤

𝑑𝑥
]

2

+ 2[𝑧0 − 𝑧].
𝑑𝑣

𝑑𝑥

𝑑∅

𝑑𝑥
− 2[𝑦0 − 𝑦].

𝑑𝑤

𝑑𝑥

𝑑∅

𝑑𝑥

𝐿

0𝐴

+ [𝑦0
2 − 2𝑦0𝑦 + 𝑦2 + 𝑧0

2 − 2𝑧0𝑧 + 𝑧2]. [
𝑑∅

𝑑𝑥
]

2

) 𝑑𝑥 𝑑𝐴                                    (19) 

If a column section is symmetrical about two axes, the shear center coincides with the centroid, and we have 𝑦0 = 𝑧0 = 0. 

That is: 

𝑉 =
𝜎𝑥𝐴

2
∫ ([

𝑑𝑣

𝑑𝑥
]

2

+ [
𝑑𝑤

𝑑𝑥
]

2

+ [𝑦0
2 + 𝑧0

2 +
𝐼𝑦 + 𝐼𝑧

𝐴
] . [

𝑑∅

𝑑𝑥
]

2

− 2𝑦0.
𝑑𝑤

𝑑𝑥

𝑑∅

𝑑𝑥

𝐿

0

+ 2𝑧0.
𝑑𝑣

𝑑𝑥

𝑑∅

𝑑𝑥
) 𝑑𝑥                                                                                                            (20) 

Where: 

𝐼𝑦 = ∬ 𝑦2

𝐴

 𝑑𝐴                                                                                                                                         (21) 

𝐼𝑧 = ∬ 𝑧2

𝐴

 𝑑𝐴                                                                                                                                          (22) 

0 = ∬ 𝑦
𝐴

 𝑑𝐴 = ∬ 𝑧
𝐴

 𝑑𝐴                                                                                                                   (23) 

Since the case of pure flexural buckling is considered, the torsional work is ignored. Thus, Equation (20) becomes: 

𝑉 =
𝑁𝑥

2
∫ [[

𝑑𝑣

𝑑𝑥
]

2

+ [
𝑑𝑤

𝑑𝑥
]

2

]
𝐿

0

 𝑑𝑥                                                                                                            (24) 

Where: 

𝐼0 = 𝐴𝑦0
2 + 𝐴𝑧0

2 + 𝐼𝑦 + 𝐼𝑧                                                                                                                     (25) 

𝑁𝑥 = 𝜎𝑥𝐴                                                                                                                                                     (26) 

Total potential energy is the algebraic summation of strain energy and external work: 

Π = 𝑈 − 𝑉                                                                                                                                                   (27) 

Substituting Equation (20) and (24) into Equation (27) gives: 

 

Π =
𝐸𝐼𝑧

2
∫ (

𝑑2𝑤

𝑑𝑥2
)

2

𝑑𝑥 +
𝐸𝐼𝑦

2
∫ (

𝑑2𝑣

𝑑𝑥2
)

2

𝑑𝑥 −
𝑁𝑥

2
∫ (

𝑑𝑤

𝑑𝑥
)

2𝐿

0

𝑑𝑥 −
𝑁𝑥

2
∫ (

𝑑𝑣

𝑑𝑥
)

2𝐿

0

𝑑𝑥              (28) 
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2.2.2 Total Potential Energy Functional for Thin-Walled Column of Open Cross-Section In Torsional Buckling 

This case has two sub cases. Case A is a case where ends are allowed to warp, and sub case B, where ends are prevented 

from warping.  

2.2.2.1 Case A: End Free to Warp 

Assume the ends of the column in Figure 2.1 are allowed to warp as illustrated on Figure 2.2: 

From similar triangles: 

𝑣1

(𝑡1)
=

𝑣2

(𝑡2)
= tan 𝜙                                                                                                                                  (29) 

𝑤1

(𝑏1)
=

𝑤2

(𝑏2)
= 𝑡𝑎𝑛 𝜙                                                                                                                                 (30) 

 

Figure 2.2: One end of column warped 

𝜙 = tan 𝜙                                                                                                                                                    (31) 

For small deformation, substituting Equation (31) into Equations (29) and (30) gives respectively: 

𝑣𝑖 = t𝑖 𝜙                                                                                                                                                       (32) 

𝑤𝑖 = b𝑖 𝜙                                                                                                                                                     (33) 

Equations (32) and (33) are rewritten as Equation (34) and Equation (35) respectively 

𝑣 = 𝑧 𝜙                                                                                                                                                         (34) 

𝑤 = 𝑦 𝜙                                                                                                                                                       (35) 

From Kirchhoff's assumptions of zero shear strains, Equation (36) is obtain 

𝛾𝑥𝑦  =
𝑑𝑢𝑦

𝑑𝑦
+

𝑑𝑣

𝑑𝑥
= 0                                                                                                                                (36) 
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Solving Equation (36) gives: 

𝑢𝑦  = −𝑦
𝑑𝑣

𝑑𝑥
                                                                                                                                               (37) 

Substituting Equation (32) into Equation (37) gives: 

𝑢𝑦  = −𝑦 t𝑖

𝑑𝜙

𝑑𝑥
                                                                                                                                          (38) 

Similarly if the warping of the flanges moves in z direction, then: 

𝑢𝑧  = −𝑧b𝑖

𝑑𝜙

𝑑𝑥
                                                                                                                                          (39) 

Axial displacement is obtained by the summation of Equations (38) and (39). That is: 

𝑢 = 𝑢𝑦 + 𝑢𝑧  = −𝑦 t𝑖

𝑑𝜙

𝑑𝑥
− 𝑧b𝑖

𝑑𝜙

𝑑𝑥
= −(𝑦 t𝑖 + 𝑧b𝑖)

𝑑𝜙

𝑑𝑥
                                                              (40) 

Normal strain in x direction is the first derivative of Equations (40) with respect to x: 

𝜀𝑥  = −(𝑦 t𝑖 + 𝑧b𝑖)
𝑑2𝜙

𝑑𝑥2
                                                                                                                        (41) 

The twist (shear strain around x-axis) is obtained by adding the first derivatives of w and v with respect to x. That is the 

summation of the first derivatives of Equations (34) and (35) with respect to x yields Equation (42) 

𝛾𝑠 = 𝜀𝑧𝑥 + 𝜀𝑦𝑥                                                                                                                                          (42) 

Where 𝛾𝑠 is shear strain around x-axis 

The first derivatives of Equation (34) and (35) with respect to x are: 

𝜀𝑦𝑥  =
𝑑𝑣

𝑑𝑥
= 𝑧

𝑑𝜙

𝑑𝑥
                                                                                                                                    (43) 

𝜀𝑧𝑥  =
𝑑𝑤

𝑑𝑥
= 𝑦

𝑑𝜙

𝑑𝑥
                                                                                                                                   (44) 

Substituting Equations (43) and (44) into (42) gives: 

𝛾𝑠 = (𝑦 + 𝑧)
𝑑𝜙

𝑑𝑥
(45) 

From Hooke's law, normal and shear stresses are mathematically defined by Equation (46) and (47) respectively: 

𝜎𝑥 = 𝐸𝜀𝑥  = −𝐸(𝑦 t𝑖 + 𝑧b𝑖)
𝑑2𝜙

𝑑𝑥2
                                                                                                        (46) 

𝜏𝑠 = 𝐺𝛾𝑠  = 𝐺(𝑦 + 𝑧)
𝑑𝜙

𝑑𝑥
                                                                                                                       (47) 

Where 𝜏𝑠 is shear stress 

Average strain energy, 𝑈𝑦, is given by Equation (48) 

𝑈𝑦 =
1

2
∫ ∫ ∫ (𝜎𝑥𝜀𝑥 + 𝜏𝑠𝛾𝑠)

𝑡2

𝑡1

𝑏2

𝑏1

𝑑𝑥𝑑𝑦𝑑𝑧                                                                                           (48) 

Substituting Equations (41), (42), (45) and (46) into Equation (48) gives: 

𝑈 =
𝐸𝐼𝜔

2
∫ (

𝑑2𝜙

𝑑𝑥2
)

2

𝑑𝑥 + 
𝐺𝐽

2
∫ (

𝑑𝜙

𝑑𝑥
)

2

𝑑𝑥                                                                                         (49) 

Where: the warping torsional constant Iw and St. Venant torsional constant J are defined by Equation (50) and (51) 

respectively 
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𝐼𝜔 = ∫ ∫ (𝑦 t𝑖 + 𝑧b𝑖)
2

𝑡2

𝑡1

𝑏2

𝑏1

𝑑𝑦𝑑𝑧                                                                                                           (50) 

𝐽 = ∫ ∫ (𝑦 + 𝑧)2
𝑡2

𝑡1

𝑏2

𝑏1

𝑑𝑦𝑑𝑧                                                                                                                      (51) 

Rearranging Equation (11) and squaring both sides, yields Equation (52): 

(
𝑢

𝑦
)

2

 = (
𝑑𝑣

𝑑𝑥
)

2

                                                                                                                                           (52) 

Substituting Equation (52) into Equation (20) gives Equation (53) 

𝑉𝑦 =
1

2
∫ ∫ 𝑁𝑥 (

𝑢

𝑦
)

2𝑡2

𝑡1

𝐿

0

𝑑𝑥𝑑𝑧                                                                                                                   (53) 

Rearranging Equation (38), gives Equation (54) 

𝑢

𝑦
 = −t𝑖

𝑑𝜙

𝑑𝑥
                                                                                                                                                (54) 

Substituting Equation (54) into Equation (53), yields  Equation (55): 

𝑉𝑦 =
𝑁

2

I0

Ac

∫ (
𝑑𝜙

𝑑𝑥
)

2𝐿

0

𝑑𝑥                                                                                                                            (55) 

Where: 

𝑁I0

Ac

= ∫ 𝑁𝑥t𝑖
2

𝑡2

𝑡1

𝑑𝑧                                                                                                                                   (56) 

Where: Ac is the area of the cross section and  Io is the polar moment of inertia of the cross-section about the longitudinal 

axis passing through the shear center O. 

Adding equation (49) and (55) gives the following total potential energy: 

Π =
𝐸𝐼𝜔

2
∫ (

𝑑2𝜙

𝑑𝑥2
)

2

𝑑𝑥 −
𝑁

2

I0

Ac

∫ (
𝑑𝜙

𝑑𝑥
)

2𝐿

0

𝑑𝑥                                                                                     (57) 

2.2.2.2 Case B: Ends Prevented from Warp 

This is a case where only twisting is applied with ends prevented from warping. Consider the column in Figure 2.1 assumed 

to be a circular bar with the cross section shown in Figure 2.3.  

 

Figure 2.3: Small length dx of a circular shaft undergoing twisting 
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Since the deformation is small, the angular twist and shear strain are defined by Equation (58) and Equation (59) 

respectively: 

𝑑𝜙 = sin 𝑑𝜙 =
𝑏𝑐

𝑎𝑐
=

𝑏𝑐

𝑟
                                                                                                                          (58) 

𝛾𝑥𝑦 = sin 𝛾𝑥𝑦 =
𝑏𝑐

𝑏𝑑
=

𝑏𝑐

𝑑𝑥
                                                                                                                        (59) 

From Equations (58) and (59), obtain Equation (60): 

𝛾𝑥𝑦 = 𝑟
𝑑𝜙

𝑑𝑥
                                                                                                                                                  (60) 

Assume r = y, then Equation (60) becomes 

𝛾𝑥𝑦 = 𝑦
𝑑𝜙

𝑑𝑥
                                                                                                                                                 (61) 

On the other hand if r be z, then Equation (60) to become Equation (62): 

𝛾𝑥𝑧 = 𝑧
𝑑𝜙

𝑑𝑥
                                                                                                                                                  (62) 

From Hooke's law, shear stress is mathematically defined by Equation (63): 

𝜏𝑥𝑦 = 𝐺𝛾𝑥𝑦                                                                                                                                                 (63) 

Substituting Equation (61) into Equation (63) gives Equation (64): 

𝜏𝑥𝑦 = 𝐺. 𝑦 .  
𝑑𝜙

𝑑𝑥
                                                                                                                                        (64) 

Where G is shear modulus 

But strain energy is defined as the product of stress, strain and volume of matter. Thus, average strain energy is given by 

Equation (65): 

𝑈𝑥𝑦 =
1

2
∫ ∫ [∫ 𝜏𝑥𝑦  . 𝛾𝑥𝑦 𝑑𝑦] 𝑑𝑥 𝑑𝑧                                                                                                      (65) 

Substituting Equations (61) and (64) into Equation (65) yields Equation (66) 

𝑈𝑥𝑦 =
𝐺𝐽

2
∫ (

𝑑𝜙

𝑑𝑥
)

2

𝑑𝑥                                                                                                                               (66) 

Where J is the St. Venant torsional constant defined by Equation (67) 

𝐽 = ∫ ∫ 𝑦2 𝑑𝑦𝑑𝑧                                                                                                                                       (67) 

The total potential energy of a column subject to torsional buckling, is obtained by adding equations (57) and (66): 

Π =
𝐸𝐼𝜔

2
∫ (

𝑑2𝜙

𝑑𝑥2
)

2

𝑑𝑥 −
𝑁𝑥

2

I0

Ac

∫ (
𝑑𝜙

𝑑𝑥
)

2𝐿

0

𝑑𝑥 +
𝐺𝐽

2
∫ (

𝑑𝜙

𝑑𝑥
)

2

𝑑𝑥                                                  (68) 

2.2.3 Total Potential Energy Functional for Thin-Walled Column of Open Cross-Section in Flexural-Torsional 

Buckling 

The strain energy U for this case is obtained by adding Equations (18), (49) and (66): 

𝑈 =
𝐸𝐼𝑧

2
∫ (

𝑑2𝑤

𝑑𝑥2
)

2

𝑑𝑥 + 
𝐸𝐼𝑦

2
∫ (

𝑑2𝑣

𝑑𝑥2
)

2

𝑑𝑥 +  
𝐸𝐼𝜔

2
∫ (

𝑑2𝜙

𝑑𝑥2
)

2

𝑑𝑥 +  
𝐺𝐽

2
∫ (

𝑑𝜙

𝑑𝑥
)

2

𝑑𝑥          (69) 
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Where: 

𝐼𝑧 = ∬ 𝑧2

𝐴

 𝑑𝐴                                                                                                                                          (70) 

𝐼𝑦 = ∬ 𝑦2

𝐴

 𝑑𝐴                                                                                                                                         (71) 

𝐼𝜔 = ∬ (𝑦 t𝑖 + 𝑧b𝑖)
2

𝐴

 𝑑𝐴                                                                                                                     (72) 

𝐽 = ∬ (𝑦 + 𝑧)2

𝐴

 𝑑𝐴                                                                                                                                (73) 

Subtracting Equation (24) from Equation (69) gives the following total potential energy functional Π: 

Π =
𝐸

2
∫ [𝐼𝑧 (

𝑑2𝑤

𝑑𝑥2
)

2

+ 𝐼𝑦 (
𝑑2𝑣

𝑑𝑥2
)

2

+ 𝐼𝜔 (
𝑑2𝜙

𝑑𝑥2
)

2

+
𝐺𝐽

𝐸
(

𝑑𝜙

𝑑𝑥
)

2

−
𝑁𝑥

𝐸
(

𝑑𝑣

𝑑𝑥
)

2

−
𝑁𝑥

𝐸
(

𝑑𝑤

𝑑𝑥
)

2

−
𝑁𝑥𝐼0

𝐸𝐴
. (

𝑑∅

𝑑𝑥
)

2

+
2𝑦0𝑁𝑥

𝐸
.
𝑑𝑤

𝑑𝑥
.
𝑑∅

𝑑𝑥

−
2𝑧0𝑁𝑥

𝐸
.
𝑑𝑣

𝑑𝑥
.
𝑑∅

𝑑𝑥
]  𝑑𝑥                                      (74) 

Where: 

𝐼0 = 𝐴𝑦0
2 + 𝐴𝑧0

2 + 𝐼𝑦 + 𝐼𝑧                                                                                                                     (75) 

Equation (75) can be rewritten in term of non-dimensional coordinate, R (where: R = x/L) as follows: 

Π =
𝐸

2𝐿3
∫ [𝐼𝑧 (

𝑑2𝑤

𝑑𝑅2
)

2

+ 𝐼𝑦 (
𝑑2𝑣

𝑑𝑅2
)

2

+ 𝐼𝜔 (
𝑑2𝜙

𝑑𝑅2
)

2

+
𝐺𝐽𝐿2

𝐸
(

𝑑𝜙

𝑑𝑅
)

2

−
𝑁𝑥𝐿2

𝐸
(

𝑑𝑣

𝑑𝑅
)

2

−
𝑁𝑥𝐿2

𝐸
(

𝑑𝑤

𝑑𝑅
)

2

−
𝑁𝑥𝐼0𝐿2

𝐸𝐴
. (

𝑑∅

𝑑𝑅
)

2

+
2𝑦0𝑁𝑥𝐿2

𝐸
.
𝑑𝑤

𝑑𝑅
.
𝑑∅

𝑑𝑅
−

2𝑧0𝑁𝑥𝐿2

𝐸
.
𝑑𝑣

𝑑𝑅
.
𝑑∅

𝑑𝑅
]  𝑑𝑅                     (76) 

2.3 Determination of the Differential Equation for the Flexural Torsional Buckling Analysis of Thin-Walled Columns 

with Open Cross-Sections 

The differential equations shall be obtained by minimizing the total potential energy functional with respect to the 

displacement functions. v, w and . 

Minimizing Equation (76) with respect to v gives Equation (77): 

𝐼𝑦𝐸

𝑁𝑥𝐿2
(

𝑑4𝑣

𝑑𝑅4
) −

𝑑2𝑣

𝑑𝑅2
− 𝑧0 .

𝑑2∅

𝑑𝑅2
= 0                                                                                                       (77) 

Minimizing Equation (77) with respect to w yields Equation (78) 

𝐼𝑧𝐸

𝑁𝑥𝐿2

𝑑4𝑤

𝑑𝑅4
+

𝑑2𝑤

𝑑𝑅2
+ 𝑦0.

𝑑2∅

𝑑𝑅2
= 0                                                                                                            (78) 

Minimizing Equation (76) with respect to  gives Equation (79): 

𝐼𝜔𝐸

𝑁𝑥𝐿2

𝑑4∅

𝑑𝑅4
+ [

𝐺𝐽

𝑁𝑥

−
𝐼0

𝐴
]

𝑑2∅

𝑑𝑅2
+ 𝑦0 .

𝑑2𝑤

𝑑𝑅2
− 𝑧0 .

𝑑2𝑣

𝑑𝑅2
= 0                                                                     (79) 

Solving Equations (77). (78) and (79) simultaneously gave the following relations: 

∅ = 𝑔1. 𝑣                                                                                                                                                      (80) 

∅ = 𝑔2. 𝑤                                                                                                                                                     (81) 

𝑣 = 𝑔3. 𝑤                                                                                                                                                     (82) 
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Where: g1, g2and g3 are constants 

Substituting Equations (81) and (82) into Equation (76) gives: 

Π =
𝐸𝐼𝑇

2𝐿3
∫ [(

𝑑2𝑤

𝑑𝑅2
)

2

+ (
𝑑𝑤

𝑑𝑅
)

2

.
𝑁𝑇𝐿2

𝐸𝐼𝑇

] 𝑑𝑅                                                                                          (83) 

 

Where: 

𝐼𝑇 = 𝐼𝑧 + 𝐼𝑦 . 𝑔3
2 + 𝐼𝜔 . 𝑔2

2                                                                                                                      (84) 

𝑁𝑇 = 𝑁𝑥 (
𝐺𝐽

𝑁𝑥

. 𝑔2
2 − 𝑔3

2 − 1 −
𝐼0

𝐴
. 𝑔2

2 + 2. 𝑔2𝑦0 − 2. 𝑔2𝑔3𝑧0)                                                  (85) 

Minimizing Equation (83) with respect to w gives the governing equation of the thin-walled open cross section column 

undergoing flexural-torsional buckling as Equation (86): 

dΠ

𝑑𝑤
=

𝐸𝐼𝑇

𝐿3
∫ [

𝑑4𝑤

𝑑𝑅4
+

𝑑2𝑤

𝑑𝑅2
.
𝑁𝑇𝐿2

𝐸𝐼𝑇

] 𝑑𝑅 = 0                                                                                           (86) 

For Equation (86) to be true, its integrand must be zero. That is: 

𝑑4𝑤

𝑑𝑅4
+

𝑑2𝑤

𝑑𝑅2
.
𝑁𝑇𝐿2

𝐸𝐼𝑇

= 0                                                                                                                             (87) 

2.4 Determination of Buckling Load Formulae 

The ready solution for Equation (87) is: 

𝑤 = ℎ𝐵2                                                                                                                                                       (88) 

Where: 

𝐵2 = [𝑎1𝑎2𝑎3𝑎4]𝑇                                                                                                                                     (89) 

ℎ = [1  𝑅 𝑐𝑜𝑠 𝐵𝑅 𝑠𝑖𝑛 𝐵𝑅]                                                                                                                       (90) 

Substituting Equation (88) into Equations (80) and (82) respectively yields:  

𝐵3 = 𝑔2. 𝐵2                                                                                                                                                 (91) 

𝐵1 = 𝑔3. 𝐵2                                                                                                                                                 (92) 

Substituting Equation (88) into Equation (83) gives Equation (93): 

Π =
𝐸

2𝐿3
∫ [(

𝑑2ℎ

𝑑𝑅2
)

2

(𝐼𝑧 . 𝐵2
2 + 𝐼𝑦 . 𝑔3

2𝐵2
2 + 𝐼𝜔 . 𝑔2

2𝐵2
2)

+ (
𝑑ℎ

𝑑𝑅
)

2

(
𝐺𝐽

𝑁𝑥

. 𝑔2
2𝐵2

2 − 𝑔3
2𝐵2

2 − 𝐵2
2 −

𝐼0

𝐴
. 𝑔2

2𝐵2
2 + 2. 𝑔2𝐵2

2𝑦0

− 2. 𝑔2𝑔3𝐵2
2𝑧0) .

𝑁𝑥𝐿2

𝐸
]  𝑑𝑅                                                                                   (93) 

Substituting Equations (91) and (92) into Equation (93) gives Equation (94): 

Π =
𝐸

2𝐿3
(𝐵1

2 [𝐼𝑦𝑘𝑅𝑅 −
𝑁𝑥𝐿2

𝐸
𝑘𝑅] + 𝐵2

2 [𝐼𝑧𝑘𝑅𝑅 −
𝑁𝑥𝐿2

𝐸
𝑘𝑅] + 𝐵3

2 [𝐼𝜔𝑘𝑅𝑅 +
𝐿2

𝐸
𝐺𝐽𝑘𝑅 −

𝑁𝑥𝐿2

𝐸
.
𝐼0

𝐴
𝑘𝑅] + 2𝐵2𝐵3𝑦0 .

𝑁𝑥𝐿2

𝐸
𝑘𝑅

− 2𝐵1𝐵3𝑧0 .
𝑁𝑥𝐿2

𝐸
𝑘𝑅)                                                                                           (92) 
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2.4.1 Case of Single Symmetrical Open Section 

Minimizing Equation (94) with respect to B1 gives Equation (95): 

𝐵1 [
𝐸𝐼𝑦

𝐿2

𝑘𝑅𝑅

𝑘𝑅

− 𝑁𝑥] − 𝐵3𝑧0 . 𝑁𝑥 = 0                                                                                                    (95) 

Minimizing Equation (94) with respect to B2 yields (96): 

𝐵2 [
𝐸𝐼𝑧

𝐿2

𝑘𝑅𝑅

𝑘𝑅

− 𝑁𝑥] + 𝐵3𝑦0 . 𝑁𝑥 = 0                                                                                                    (96) 

Minimizing Equation (94) with respect to B3 gives: 

𝐵3 [
𝐸𝐼𝜔

𝐿2

𝑘𝑅𝑅

𝑘𝑅

+ 𝐺𝐽 − 𝑁𝑥 .
𝐼0

𝐴
] + 𝐵2𝑦0 . 𝑁𝑥 − 𝐵1𝑧0 . 𝑁𝑥  = 0                                                             (97)  

For pure flexural buckling case, the flexural critical buckling load is obtained from Equations (95), (96) and (97) as Equation 

(98): 

𝑁𝑐 =
𝐸𝐼

𝐿2
.
𝑘𝑅𝑅

𝑘𝑅

                                                                                                                                           (98) 

Where: I can be either 𝐼𝑦 , 𝐼𝑧 or 𝐼𝜔  as the case may be 

The Equation (98) is rewritten for various second moments of area as given by Equation (99), (100) and (101): 

𝑁𝑐𝑦 =
𝐸𝐼𝑦

𝐿2
.
𝑘𝑅𝑅

𝑘𝑅

                                                                                                                                       (99)  

𝑁𝑐𝑧 =
𝐸𝐼𝑧

𝐿2
.
𝑘𝑅𝑅

𝑘𝑅

                                                                                                                                        (100) 

𝑁𝑐𝜔 =
𝐸𝐼𝜔

𝐿2
.
𝑘𝑅𝑅

𝑘𝑅

                                                                                                                                      (101) 

Substituting Equations (99), (100) and (101) into Equations (95), (96) and (97) respectively gives Equation (102), (103), 

and (104) respectively: 

𝐵1[𝑁𝑐𝑦 − 𝑁𝑥] − 𝐵3𝑧0 . 𝑁𝑥 = 0                                                                                                             (102) 

𝐵2[𝑁𝑐𝑧 − 𝑁𝑥] + 𝐵3𝑦0 . 𝑁𝑥 = 0                                                                                                             (103) 

𝐵3[𝑁∅ − 𝑁𝑥 . ]
𝐼0

𝐴
+ 𝐵2𝑦0 . 𝑁𝑥 − 𝐵1𝑧0 . 𝑁𝑥  = 0                                                                                 (104) 

Where: 

𝑁∅ = (𝑁𝑐𝜔 + 𝐺𝐽)
𝐴

𝐼0

                                                                                                                               (105) 

𝑁𝑐𝜔 =
𝐸𝐼𝜔

𝐿2
.
𝑘𝑅𝑅

𝑘𝑅

;        𝐼𝜔 = 𝐼𝑦𝑧 = 𝐼𝑦 . ℎ𝑖
2 + 𝐼𝑧 . 𝑏𝑖

2 = 𝑤𝑎𝑟𝑝𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Iz is the second moment of area about (around) y axis and Iy is the second moment of area about (around) z axis. 

The Equations (102), (103) and (104) can be put in matrix forms as follows: 

[

𝑁𝑐𝑦 − 𝑁𝑥 0 −𝑧0 . 𝑁𝑥

0 𝑁𝑐𝑧 − 𝑁𝑥 𝑦0 . 𝑁𝑥

−𝑧0. 𝑁𝑥 𝑦0. 𝑁𝑥 [𝑁∅ − 𝑁𝑥. ]
𝐼0

𝐴

] [

𝐵1

𝐵2

𝐵3

] = 0                                                                           (106) 
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For non-trivial solution, the determinant of Equation (106) must be zero. That is: 

|

𝑁𝑐𝑦 − 𝑁𝑥 0 −𝑧0 . 𝑁𝑥

0 𝑁𝑐𝑧 − 𝑁𝑥 𝑦0 . 𝑁𝑥

−𝑧0. 𝑁𝑥 𝑦0. 𝑁𝑥 [𝑁∅ − 𝑁𝑥. ]
𝐼0

𝐴

| = 0                                                                                    (107) 

In this case, it is assumed that the axis of symmetry is y axis. Hence, z0 = 0. Substituting for z0 equals zero into Equation 

(107) gives Equation (108): 

|

𝑁𝑐𝑦 − 𝑁𝑥 0 0

0 𝑁𝑐𝑧 − 𝑁𝑥 𝑦0 . 𝑁𝑥

0 𝑦0. 𝑁𝑥 [𝑁∅ − 𝑁𝑥. ]
𝐼0

𝐴

| = 0                                                                                     (108) 

Equation (108) can be written as two independent equations as: 

𝑁𝑐𝑦 − 𝑁𝑥 = 0                                                                                                                                           (109) 

|

𝑁𝑐𝑧 − 𝑁𝑥 𝑦0 . 𝑁𝑥

𝑦0 . 𝑁𝑥 [𝑁∅ − 𝑁𝑥. ]
𝐼0

𝐴

| = 0                                                                                                           (110) 

The determinant of Equation (110) is given by Equation (111): 

𝐷1𝑁𝑥
2 + 𝐷2𝑁𝑥 + 𝐷3 = 0                                                                                                                      (111) 

Where: 

𝐷1  = 1 − 𝑦0
2

𝐴

𝐼0

                                                                                                                                     (112) 

𝐷2  = −[𝑁𝑐𝑧 + 𝑁∅]                                                                                                                                 (113) 

𝐷3  = 𝑁∅𝑁𝑐𝑧                                                                                                                                             (114) 

Using formula for the roots of quadratic equation, it is obtained that: 

𝑁𝑥 =
−𝐷2 ± √𝐷2

2 − 4𝐷1𝐷3

2𝐷1

                                                                                                                (115) 

Substituting Equations (112), (113) and (114) into Equation (115) gives Equation (116): 

𝑁𝑥 =
(𝑁𝑐𝑧 + 𝑁∅ ± ∝)

2 (1 − 𝑦0
2 𝐴

𝐼0
)

                                                                                                                            (116) 

Where: 

∝= √𝑁𝑐𝑧
2 + 𝑁∅

2 + 2𝑁∅𝑁𝑐𝑧 (2𝑦0
2

𝐴

𝐼0

− 1)                                                                                    (117) 

3.   NUMERICAL EXAMPLE 

Determine the Critical buckling load of single symmetric channel section with hinged ends. The requirements for the shape 

functions are that they must satisfy the geometric boundary conditions. The properties of the channel are tabulated below 

as obtained from Steel Designer’s Manual (7th Ed., 2012). 

Table 3.1 Channel Section Designation 180 x 75 x 20 

Section 

Designation 

d (mm) b (mm) tw(mm)   tf 

(mm) 
A (cm2) Iz (cm4) Iy (cm4) 

y0 

(cm) 

z0 

(cm) 

180x75x20 

Channel 

180 75 6.0 10.5 
25.9 1370 146 

2.87 0 
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4.   RESULTS AND DISCUSSIONS 

4.1 Results: The problem given in the example was solved using the derived equations. The results obtained were compared 

with those obtained by Jerath (2020) and Iyengar (1988) and presented in Table 4.1 

Table 4.1 Comparison of Critical Buckling Load, Nx obtained in this Study with other Results 

Length, 

L (m) 

Critical Buckling Load, Cr (KN) 

Present 

Study Crp 

Jerath 

(2020), Crj 

Iyengar 

(1988), Cri 

Crp-Crj % diff. 

(Crp-Crj)100 

Crp-Cri % diff. 

(Crp-Cri)100 

1 3026.02 3026.02 3026.02 0 0 0 0 

1.25 1936.65 1936.65 1936.65 0 0 0 0 

1.5 1344.9 1344.9 1344.9 0. 0. 0. 0. 

1.75 988.09 988.09 988.09 0 0 0 0 

2 756.51 756.51 756.51 0 0 0 0 

2.25 597.73 597.73 597.73 0 0 0 0 

2.5 484.16 484.16 484.16 0 0 0 0 

2.75 400.13 400.13 400.13 0 0 0 0 

3 336.22 336.22 336.22 0 0 0 0 

3.25 286.49 286.49 286.49 0 0 0 0 

3.5 247.02 247.02 247.02 0 0 0 0 

3.75 215.18 215.18 215.18 0 0 0 0 

4 189.13 189.13 189.13 0 0 0 0 

4.25 167.53 167.53 167.53 0 0 0 0 

4.5 149.43 149.43 149.43 0 0 0 0 

4.75 134.12 134.12 134.12 0 0 0 0 

5 121.04 121.04 121.04 0 0 0 0 

 

 

Figure 4.1: Graph of critical buckling against the length of column for single symmetric channel section 

5.   DISCUSSION 

In solving the problem, the differential equations were found to be reduced to a system of algebraic eigenvalue-eigenvector 

problems. The buckling equations were derived specifically for single symmetric column sections, identifying the buckling 

modes as flexural-torsional. For the single symmetric sections, the buckling behavior is described by a system of three 
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homogeneous differential equations, two of which are uncoupled. In the case where the thin-walled column is hinged at 

both ends, the solution of the one uncoupled buckling equation provides the expression for the critical buckling load in the 

direction of the axis of symmetry. 

The critical buckling loads were found to decrease as the length of the column increases. Comparisons with the 

corresponding solutions presented by Jerath (2020) using the differential equations method showed identical results, 

validating the numerical approach used in this study. Additionally, the results were further compared with the solution 

obtained by Iyengar (1988), which utilized the equilibrium of the deformed shape approach. Both solutions were found to 

be consistent, reinforcing the reliability of the current study's findings. 
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